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ABSTRACT 

Current advances in GPU hardware architecture and processing 

power in recent years have allowed more and more general 

purpose techniques to be used in real time graphics applications, 

where previously only fixed-function programs could be written. 

These advances have allowed developers the freedom to 

implement more photorealistic effects, by bypassing or 

augmenting the standard graphics pipeline. It also allows the 

development of algorithms for the GPU (Graphics Processing 

Unit) that could previously only be run off-line on the CPU. This 

report presents the results of investigating and developing a 

photon mapping and ray tracing algorithm for photorealistic 

effects and global illumination lighting that was previously 

restricted to offline CPU-based algorithms, now using modern 

GPU technologies. 

 

Categories and Subject Descriptors 

I.3.7 [Three-Dimensional Graphics and Realism] Color, 

shading, shadowing, and texture, Raytracing. 

General Terms 

Algorithms, Measurement, Performance, Experimentation, 

Verification. 

Keywords 

Global Illumination, Photon Mapping, GPGPU, KD-Tree, Real-

Time, Post-processing. 

 

1. Introduction/Motivation 

Photorealistic rendering is the computer graphics field of 

producing images that look as realistic as possible, as if taken 

from a camera or perceived by the human visual system. 

Rendering techniques simulate the way light propagates within the 

environment and interact with different objects and materials. 

Some of these features include global illumination, diffuse 

 

Figure 1: Examples of computer-generated global illumination 

effects 

interreflection, colour bleeding, soft shadows, caustics, and 

imaging artifacts of real-world cameras (e.g. depth of field, 

exposure control, motion blur, chromatic aberration, lens flare, 

bloom, and film grain) (Figure 1). 

Many algorithms for solving different photorealistic features exist, 

but most, especially global illumination algorithms, are very 

computationally expensive and can only be used in offline 

rendering situations. A fundamental problem in computer graphics 

research is to create more accurate photorealistic images, and to 

be able to produce those images in real-time [29], [9]. 

Realistic images are in high demand from different industry 

domains in entertainment (films, games), science and engineering, 

but often many parts of these the photorealistic images used in 

such applications take long times to render and must be done off-

line. Due to the recent improvement in programmable graphics 

hardware opportunities exist to develop algorithms for the GPU 

that may be able to render more photorealistic effects in real-time. 

 

2. Problem Description 

In traditional real time graphics applications, the graphics 

hardware has a fixed pipeline which consists of applying 

transformations to vertices, rasterizing polygons to pixels, and 

shading pixels to apply lighting and textures. The algorithms of 

this pipeline were fixed, and could not be modified beyond its 

inputs and parameters. This restriction allowed the algorithm to be 

implemented in hardware, for performance reasons to allow real-

time operation. 



Vertex and fragment shaders now allow software programs to be 

written that can replace the fixed vertex transformation process 

and the pixel shading/lighting algorithms, but the rasterization 

process is still fixed. 

General-Purpose GPU (GPGPU) technologies like nVidia's 

Compute Unified Device Architecture (CUDA) and the Open 

Computing Language (OpenCL) allow general purpose programs 

to be written for the GPU as a massively parallel processor. 

 

2.1 Background and Definitions 

This section describes the key rendering effects related to the 

project. 

Reflection and refraction are effects when the camera ray strikes 

an object, but instead of seeing that object, the material redirects 

the camera ray to some other part of the scene, and you see that 

instead. This is commonly seen in such things as mirrors, glass, 

crystal, and water. 

Depth of field is an effect caused by lenses with a nonzero 

aperture in which only objects of a certain distance are in focus, 

and everything else is blurred. Motion blur is similarly caused 

when a picture is exposed for a nonzero time, and light from a 

moving object will be blurred across its motion.  

High Dynamic Range (HDR) refers to the fact that human eyes 

can see a very large range of light intensities, but computer 

displays can only output a limited range of brightness's. Tone 

mapping and bloom are examples of effects that simulate having a 

high dynamic range image on a low dynamic range device. 

Global illumination is a group of algorithms that try to simulate a 

more realistic lighting environment by taking into account 

visibility and light reflections from all surfaces in the scene. This 

is in contrast to direct illumination, which only accounts for the 

distance and direction of the shading point to the light source 

itself, and does not consider other objects in the scene. Global 

illumination can be further broken down into three fundamental 

components and effects: (1) Diffuse interreflection accounts for 

the reflection of light from one diffuse surface to another, possibly 

over multiple bounces. (2) Caustics account for the distribution of 

light after it reflects or refracts from a specular surface onto a 

diffuse surface, such as light through a magnifying glass, bounced 

off of a mirror, or refracted light at the bottom of a pool. (3) 

Colour bleeding accounts for the fact that the properties of the 

light itself may change after reflecting or refracting off of a 

surface. 

 

2.2 Rendering Techniques 

There are many techniques that are used in graphics algorithms to 

simulate global illumination, and photorealistic effects in general. 

 

Figure 2. Direct illumination (left) compared to global 

illumination (right) 

2.2.1 Ray Tracing 
Ray tracing, ray casting, and path tracing are alternative 

algorithms from rasterization that use ray-object intersection tests 

to compute visibility of objects, usually with rays originating from 

the camera (Dutré et al, 2006). These algorithms are much more 

robust than rasterization, as they can handle reflection and 

refraction by recursively tracing new rays from the first 

intersection point, in a direction determined by the type of 

material it hit. Ray tracers produce images by casting one or more 

rays out from the camera point in the direction of each pixel on 

the screen. Shadow rays can be cast from a shading point to a light 

to determine if that point is in shadow or not. Distributed ray 

tracers shoot multiple rays per pixel, each with different properties 

(i.e. time, location on camera lens) to simulate effects such as 

motion blur or depth of field. 

KD tree, BSP trees, bounding volume hierarchies (BVHs),  oct 

trees, and uniform grids are all divide-and-conquer algorithms that 

spatially subdivide a set of points or polygons for efficient 

searching for items in nearby space (Akenine-Möller et al, 2008). 

These algorithms are commonly used to speed up ray-object 

intersection tests, and in photon mapping for looking up nearby 

photons.  

2.2.2 Photon Mapping 

Photon mapping [17] is a two-pass algorithm where in the first 

pass photons are recursively ray traced from the light sources into 

the scene, recording their intersections with scene objects into a 

spatial data structure (usually a KD-tree). In the second pass, rays 

are traced from the camera as in standard ray tracing, but to find 

the colour at each pixel, the lighting is computed by looking up 

nearby photons at that location and using their recorded incoming 

light direction, colour, and density to compute the shading for that 

pixel. Photon mapping is a very robust algorithm that can handle 



both diffuse interreflection and caustics well. Photon mapping has 

two important extensions: final gathering and irradiance caching. 

Final gathering [16] is an extension to photon mapping where 

instead of looking up nearby photons on the first intersection from 

the camera ray, multiple secondary rays are cast on a hemisphere 

from the intersection point to find what other object contribute to 

the lighting. Photons are then looked up at the intersections of 

those rays, and their contribution to the final pixel colour is 

calculated. Final gathering allows fewer photons to be traced for 

an equivalent quality image, and trades off low-frequency 

variance in the photon map density for high-frequency noise. Note 

that final gathering cannot be used for caustic lighting lookups, 

because of the very low probability of a random ray on the 

hemisphere connecting to a light source through a specular 

material. 

Irradiance caching [16] is another extension to photon mapping 

where the final lookup of nearby photons is cached at gather 

points, and then nearby cached gather points are interpolated for 

future queries instead or performing a full photon lookup.   

2.2.3 Radiosity 

Radiosity is an algorithm that divides the scene into patches of 

surfaces, and then computes the visibility between all pairs of 

patches. It uses these visibilities to compute the brightness of each 

patch by starting from the light source, and iteratively applying 

the brightness of one patch to all its visible neighbours. This 

algorithm works very well for finding diffuse interreflection, but 

cannot handle effects where the viewing angle is an important 

parameter in the lighting, as specular reflection, refraction, or 

caustics. 

2.2.4 Other Strategies 

Post-processing algorithms take as input a rendered image, and 

apply kernels or programs to each pixel. Common post processing 

algorithms are exposure control, HDR, bloom, depth of field, and 

motion blur. 

Depth of field and motion blur can created directly via distributed 

ray tracing using multiple rays for different locations on a lens's 

aperture or in time, or it can be simulated using post-processing 

effects that blur the final image depending on the depth or 

velocity of each pixel. Tone mapping simulates HDR images by 

changing the intensity of a pixel to be relative to its local 

neighbours to improve contrast, and bloom makes bright areas 

appear more intense by having light leak into nearby areas. 

 

2.3 Related Work 

Much work has been done in graphics algorithms since the 

introduction of shader programs and more general purpose 

frameworks like CUDA and OpenCL.  

[10] presents a method of choosing final gather rays of all ray 

traced pixels in a uniform manner, which enables all final gather 

rays of the same direction to be clustered and rendered using the 

GPU's rasterization hardware in a single pass, due to the coherent 

nature of the rays. This can compute the final gathering of an 

arbitrary number of visible points in a fixed number of passes on 

the GPU. [11] has implemented this in the Parthenon Renderer 

project. [26] present a similar algorithm for using the rasterization 

hardware on the first (from light) and last (into camera) segments 

of photon paths. [23] also use rasterization for the final gather 

portion of their algorithm. This technique has been used in 

Radiosity algorithms for calculating patch-patch visibilities for 

some time ([7], , [32]). 

[12] presents a way of adaptively sampling camera rays in a 

distributed ray tracing algorithm to achieve high quality images 

using less rays. Their algorithm uses a KD tree to store camera 

rays based on their initial parameters, and uses this tree to find 

nodes of greatest variance where more camera rays will be added 

to improve quality. This results in much higher image quality than 

using the same number of rays in a uniform manner because the 

rays are cast where they will have the greatest effect on the final 

image, and can work in an arbitrary number of dimensions, so can 

also reduce temporal aliasing in motion blur, or artifacts in depth 

of field or soft shadowing effects. 

[15] and [14] change the regular order of photon mapping passes 

to trace camera rays first, and then iteratively trace photons in 

many secondary passes, each increasing the accuracy of the image 

by refining the radiance estimate at ray trace points. This reduces 

the memory requirements of photon mapping in that photons from 

previous passes need not be stored. In [13] they improve this 

algorithm by adding a distributed ray tracing pass after each 

photon mapping pass to enable the algorithm to handle effects 

such as motion blur or depth of field, and implement it using 

fragment shaders on the GPU. Hachisuka demonstrates this in his 

Stochastic Progressive Photon Mapping project. 

[19] and [42] propose algorithms that can create spatial 

subdivision trees entirely in GPGPU programs that are faster then 

the best CPU algorithms. Javor proposes a uniform grid structure, 

and Zhou creates KD-trees. [40] uses this algorithm to compute 

photon mapping and real-time ray tracing entirely in the GPU 

using irradiance caching. 

[35] develops a CPU-based real-time ray tracer called OpenRT for 

his PhD thesis, and briefly discusses GPU implementations and 

global illumination. Aruana [5] is another implementation of a 

high-performance CPU-based ray tracer. 

Recently, attempts are being made to port smallPT [3] and 

LuxRender (a derivative of pbrt, [29]) to use GPGPU algorithms 

(SmallptGPU, SmallLuxGPU,[6]) to compute the path tracing 

components using the OpenCL GPGPU environment. 

The RenderCache [37] uses image-space caching and re-

projection of shaded pixels to reduce the shading costs for 

proceeding frames of images, based on the fact that sequential 

frames will likely be very similar, and can reduce the shading cost 

of new frames by 10 to 100 times while preserving image quality. 



[34] improve this algorithm to run on vertex and pixel shaders on 

the GPU. 

 

3. Solution to Problem 

This project proposes using a modified photon mapping algorithm 

to compute global illumination in a real-time graphics application. 

This algorithm must be able to handle large scenes and dynamic 

geometry. Due to time constraints and challenges learning the 

CUDA architecture, this project was scaled back from its previous 

goals of implementing a progressive algorithm that could cope 

with dynamic geometry, and will only implement photon mapping 

for static scenes. 

 

3.1 Implementation Framework 

This project was implemented in a combination of Python (using 

the PyCUDA, pyglet, and PIL libraries) for the main application,  

nVidia CUDA for the ray tracing and photon mapping algorithms, 

and C++ for the KD tree building algorithms. It was implemented 

on Windows 7, using a computer with an Intel Core2 Quad Q8200 

CPU and an nVidia GeForce GTX 275 GPU. The implementation 

should however be cross platform and run on any CUDA 

Compute 2.3 capable device. 

 

3.2 Overview 

Python was used for the main application, and manages the GUI, 

loading scene files, and calling all of the other modules. First, the 

application loads and parses the scene files containing the 

geometry and materials. The application also loads the scene 

Surface Area Heuristic (SAH) KD tree which is created offline by 

a separate tool. Using a CUDA algorithm in the GPU, photons are 

traced through the scene and their hits recorded. The hits are then 

compiled into a Voxel Volume Heuristic (VVH) KD tree using a 

CPU algorithm in C++. The main loop of the program consists of 

shooting camera rays (one per screen pixel) in a CUDA algorithm, 

using the geometry KD tree to find candidate triangles, and the 

Moller triangle intersection test [27] to find the nearest 

intersection triangle. The ray hits are then passed to another 

CUDA program that uses the photon KD tree to look up the k-

nearest photons to the hit position, using a max-heap to keep track 

of the photon distances. The pixel's color is then computed as the 

sum of the bidirectional reflectance distribution function (BRDF) 

of each of the photons, divided by the area of the circle that 

contains them. The final image is then post-processed (currently, 

this is just gamma correction) and displayed.  

The Surface Area Heuristic [25] Proposes keeping a geometry 

KD tree intentionally unbalanced because the probability of a ray 

entering nodes in the trees is not equal for all nodes. The cost 

C(V) of a node V is estimated as: 

 𝐶 𝑉 =  𝐶𝑡𝑟𝑎𝑣 +  𝑃 𝑉𝐿 𝐶 𝑉𝐿 +  𝑃 𝑉𝑅 𝐶 𝑉𝑅  

 

 

Figure 3: Application components 

 

where 𝐶𝑡𝑟𝑎𝑣  is the cost of traversing a node, and  𝑃 𝑉𝐿 , 𝑃 𝑉𝑅  is 

the probability that a ray will intersect with the left and right 

child, respectively. 𝑃 𝑉𝐿  and 𝑃 𝑉𝑅  are computed as  

 𝑃 𝑉𝐿 =
𝑆𝐴𝐻 𝑉𝐿 

𝑆𝐴𝐻 𝑉 
  𝑃 𝑉𝑅 =

𝑆𝐴𝐻 𝑉𝑅 

𝑆𝐴𝐻 𝑉 
 

Where  𝑆𝐴𝐻 𝑉  is the surface area of a voxel. 

Thus the minimum cost of a node can be found by evaluating all 

possible splitting planes, and choosing the one with lowest cost. 



The Voxel Volume Heuristic [36] Proposes a similar measure for 

photon KD trees, but weighted by the volume of the node instead 

of the surface area. 

𝑃 𝑉𝐿 =
𝑉𝑂𝐿 𝑉𝐿 ± 𝑅 

𝑉𝑂𝐿 𝑉 ± 𝑅 
    𝑃 𝑉𝑅 =

𝑉𝑂𝐿 𝑉𝑅 ± 𝑅 

𝑉𝑂𝐿 𝑉 ± 𝑅 
 

Where 𝑅 is the maximum radius of a photon lookup. 

 

4. Results 

Evaluation was done primarily on two scenes, the Sponza Atrium 

model (Fig. 5), and the Conference Room model (Fig. 6). The 

Sponza Atrium has 76,154 triangles while the Conference room 

has almost four times more geometry with 282,655 triangles.  In 

both scenes, 262,144 initial photons were shot from an area light 

source in the sky, with a maximum of 4 bounces each. 

approximately 675,000 total photon hits were recorded in the 

photon map (photons were shot randomly, and are sometimes 

absorbed or leave the scene without hitting anything). All images 

were rendered at 512x512 pixels. 

 

Figure 4: Left: Sponza Atrium, Right: Conference Room 

 

4.1 Sample Images 

Some images of the Sponza Atrium using the 32-nearest photons 

for lighting. Notice diffuse interreflection (all ears not in direct 

sunlight), soft shadows around columns, and colour bleeding of 

the brown ceiling onto the floor. Also note the artifacts created by 

the photon mapping algorithm, such as low-frequency noise 

 

Figure 5: Sponza Atrium 

 

 

in areas that are evenly lit (walls in all images), and where the 

photon mapping algorithm considers photons that are nearby the 

shading point, but should not contribute to the lighting (light 

circles on floor around chair legs). 

 

 

 

 

 

Figure 6: Conference Room 



4.2 Performance 

This algorithm is was able to achieve real time performance on 

both scenes, with the rendering time mostly dependant on the 

number of photons looked up per pixel.  

  

Operation Time (ms) 

Sponza 

Atrium  

Conf-

erence 

Room  

Ray tracing 26 26 

Ray tracing + 2 nearest photon lookup 33 50 

Ray tracing + 4 nearest photon lookup 36 54 

Ray tracing + 8 nearest photon lookup 47 68 

Ray tracing + 16 nearest photon lookup 67 107 

Ray tracing + 32 nearest photon lookup 121 197 

Ray tracing + 64 nearest photon lookup 264 399 

Ray tracing + 128 nearest photon lookup 634 856 

Ray tracing + 256 nearest photon lookup 1541 1977 

 

Note that ray tracing performance is equal for both scenes, even 

though the conference room scene has 4 times more geometry. 

Performance is mainly affected by the number of photon samples 

required per shading point. One reason for this may be that less 

time was spent optimizing the photon lookup algorithm and its 

KD tree, and the photons are being stored as AoS instead of SoA, 

so memory bandwidth on the GPU may be the limiting factor. 

 

 

Figure 7: four, 32, and 256 photon samples per pixel, showing 

variance in lighting due to random photons 

 

5. Conclusion 

Advances in hardware technology present an excellent 

opportunity for creating high-quality graphics applications. 

Realistic computer generated images are in high demand, and 

there has been much interest in the research community in the past 

years in the topic of real-time applications. 

This project demonstrates that it is feasible to create ray traced 

and photon mapped images in real time using current graphics 

hardware.  
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