

 Global Illumination Effects

Final Report
Tom Flanagan

CPSC 502
University of Calgary

thomas.m.flanagan@ucalgary.ca

ABSTRACT

Current advances in GPU hardware architecture and processing

power in recent years have allowed more and more general

purpose techniques to be used in real time graphics applications,

where previously only fixed-function programs could be written.

These advances have allowed developers the freedom to

implement more photorealistic effects, by bypassing or

augmenting the standard graphics pipeline. It also allows the

development of algorithms for the GPU (Graphics Processing

Unit) that could previously only be run off-line on the CPU. This

report presents the results of investigating and developing a

photon mapping and ray tracing algorithm for photorealistic

effects and global illumination lighting that was previously

restricted to offline CPU-based algorithms, now using modern

GPU technologies.

Categories and Subject Descriptors

I.3.7 [Three-Dimensional Graphics and Realism] Color,

shading, shadowing, and texture, Raytracing.

General Terms

Algorithms, Measurement, Performance, Experimentation,

Verification.

Keywords

Global Illumination, Photon Mapping, GPGPU, KD-Tree, Real-

Time, Post-processing.

1. Introduction/Motivation

Photorealistic rendering is the computer graphics field of

producing images that look as realistic as possible, as if taken

from a camera or perceived by the human visual system.

Rendering techniques simulate the way light propagates within the

environment and interact with different objects and materials.

Some of these features include global illumination, diffuse

Figure 1: Examples of computer-generated global illumination

effects

interreflection, colour bleeding, soft shadows, caustics, and

imaging artifacts of real-world cameras (e.g. depth of field,

exposure control, motion blur, chromatic aberration, lens flare,

bloom, and film grain) (Figure 1).

Many algorithms for solving different photorealistic features exist,

but most, especially global illumination algorithms, are very

computationally expensive and can only be used in offline

rendering situations. A fundamental problem in computer graphics

research is to create more accurate photorealistic images, and to

be able to produce those images in real-time [29], [9].

Realistic images are in high demand from different industry

domains in entertainment (films, games), science and engineering,

but often many parts of these the photorealistic images used in

such applications take long times to render and must be done off-

line. Due to the recent improvement in programmable graphics

hardware opportunities exist to develop algorithms for the GPU

that may be able to render more photorealistic effects in real-time.

2. Problem Description

In traditional real time graphics applications, the graphics

hardware has a fixed pipeline which consists of applying

transformations to vertices, rasterizing polygons to pixels, and

shading pixels to apply lighting and textures. The algorithms of

this pipeline were fixed, and could not be modified beyond its

inputs and parameters. This restriction allowed the algorithm to be

implemented in hardware, for performance reasons to allow real-

time operation.

Vertex and fragment shaders now allow software programs to be

written that can replace the fixed vertex transformation process

and the pixel shading/lighting algorithms, but the rasterization

process is still fixed.

General-Purpose GPU (GPGPU) technologies like nVidia's

Compute Unified Device Architecture (CUDA) and the Open

Computing Language (OpenCL) allow general purpose programs

to be written for the GPU as a massively parallel processor.

2.1 Background and Definitions

This section describes the key rendering effects related to the

project.

Reflection and refraction are effects when the camera ray strikes

an object, but instead of seeing that object, the material redirects

the camera ray to some other part of the scene, and you see that

instead. This is commonly seen in such things as mirrors, glass,

crystal, and water.

Depth of field is an effect caused by lenses with a nonzero

aperture in which only objects of a certain distance are in focus,

and everything else is blurred. Motion blur is similarly caused

when a picture is exposed for a nonzero time, and light from a

moving object will be blurred across its motion.

High Dynamic Range (HDR) refers to the fact that human eyes

can see a very large range of light intensities, but computer

displays can only output a limited range of brightness's. Tone

mapping and bloom are examples of effects that simulate having a

high dynamic range image on a low dynamic range device.

Global illumination is a group of algorithms that try to simulate a

more realistic lighting environment by taking into account

visibility and light reflections from all surfaces in the scene. This

is in contrast to direct illumination, which only accounts for the

distance and direction of the shading point to the light source

itself, and does not consider other objects in the scene. Global

illumination can be further broken down into three fundamental

components and effects: (1) Diffuse interreflection accounts for

the reflection of light from one diffuse surface to another, possibly

over multiple bounces. (2) Caustics account for the distribution of

light after it reflects or refracts from a specular surface onto a

diffuse surface, such as light through a magnifying glass, bounced

off of a mirror, or refracted light at the bottom of a pool. (3)

Colour bleeding accounts for the fact that the properties of the

light itself may change after reflecting or refracting off of a

surface.

2.2 Rendering Techniques

There are many techniques that are used in graphics algorithms to

simulate global illumination, and photorealistic effects in general.

Figure 2. Direct illumination (left) compared to global

illumination (right)

2.2.1 Ray Tracing
Ray tracing, ray casting, and path tracing are alternative

algorithms from rasterization that use ray-object intersection tests

to compute visibility of objects, usually with rays originating from

the camera (Dutré et al, 2006). These algorithms are much more

robust than rasterization, as they can handle reflection and

refraction by recursively tracing new rays from the first

intersection point, in a direction determined by the type of

material it hit. Ray tracers produce images by casting one or more

rays out from the camera point in the direction of each pixel on

the screen. Shadow rays can be cast from a shading point to a light

to determine if that point is in shadow or not. Distributed ray

tracers shoot multiple rays per pixel, each with different properties

(i.e. time, location on camera lens) to simulate effects such as

motion blur or depth of field.

KD tree, BSP trees, bounding volume hierarchies (BVHs), oct

trees, and uniform grids are all divide-and-conquer algorithms that

spatially subdivide a set of points or polygons for efficient

searching for items in nearby space (Akenine-Möller et al, 2008).

These algorithms are commonly used to speed up ray-object

intersection tests, and in photon mapping for looking up nearby

photons.

2.2.2 Photon Mapping

Photon mapping [17] is a two-pass algorithm where in the first

pass photons are recursively ray traced from the light sources into

the scene, recording their intersections with scene objects into a

spatial data structure (usually a KD-tree). In the second pass, rays

are traced from the camera as in standard ray tracing, but to find

the colour at each pixel, the lighting is computed by looking up

nearby photons at that location and using their recorded incoming

light direction, colour, and density to compute the shading for that

pixel. Photon mapping is a very robust algorithm that can handle

both diffuse interreflection and caustics well. Photon mapping has

two important extensions: final gathering and irradiance caching.

Final gathering [16] is an extension to photon mapping where

instead of looking up nearby photons on the first intersection from

the camera ray, multiple secondary rays are cast on a hemisphere

from the intersection point to find what other object contribute to

the lighting. Photons are then looked up at the intersections of

those rays, and their contribution to the final pixel colour is

calculated. Final gathering allows fewer photons to be traced for

an equivalent quality image, and trades off low-frequency

variance in the photon map density for high-frequency noise. Note

that final gathering cannot be used for caustic lighting lookups,

because of the very low probability of a random ray on the

hemisphere connecting to a light source through a specular

material.

Irradiance caching [16] is another extension to photon mapping

where the final lookup of nearby photons is cached at gather

points, and then nearby cached gather points are interpolated for

future queries instead or performing a full photon lookup.

2.2.3 Radiosity

Radiosity is an algorithm that divides the scene into patches of

surfaces, and then computes the visibility between all pairs of

patches. It uses these visibilities to compute the brightness of each

patch by starting from the light source, and iteratively applying

the brightness of one patch to all its visible neighbours. This

algorithm works very well for finding diffuse interreflection, but

cannot handle effects where the viewing angle is an important

parameter in the lighting, as specular reflection, refraction, or

caustics.

2.2.4 Other Strategies

Post-processing algorithms take as input a rendered image, and

apply kernels or programs to each pixel. Common post processing

algorithms are exposure control, HDR, bloom, depth of field, and

motion blur.

Depth of field and motion blur can created directly via distributed

ray tracing using multiple rays for different locations on a lens's

aperture or in time, or it can be simulated using post-processing

effects that blur the final image depending on the depth or

velocity of each pixel. Tone mapping simulates HDR images by

changing the intensity of a pixel to be relative to its local

neighbours to improve contrast, and bloom makes bright areas

appear more intense by having light leak into nearby areas.

2.3 Related Work

Much work has been done in graphics algorithms since the

introduction of shader programs and more general purpose

frameworks like CUDA and OpenCL.

[10] presents a method of choosing final gather rays of all ray

traced pixels in a uniform manner, which enables all final gather

rays of the same direction to be clustered and rendered using the

GPU's rasterization hardware in a single pass, due to the coherent

nature of the rays. This can compute the final gathering of an

arbitrary number of visible points in a fixed number of passes on

the GPU. [11] has implemented this in the Parthenon Renderer

project. [26] present a similar algorithm for using the rasterization

hardware on the first (from light) and last (into camera) segments

of photon paths. [23] also use rasterization for the final gather

portion of their algorithm. This technique has been used in

Radiosity algorithms for calculating patch-patch visibilities for

some time ([7], , [32]).

[12] presents a way of adaptively sampling camera rays in a

distributed ray tracing algorithm to achieve high quality images

using less rays. Their algorithm uses a KD tree to store camera

rays based on their initial parameters, and uses this tree to find

nodes of greatest variance where more camera rays will be added

to improve quality. This results in much higher image quality than

using the same number of rays in a uniform manner because the

rays are cast where they will have the greatest effect on the final

image, and can work in an arbitrary number of dimensions, so can

also reduce temporal aliasing in motion blur, or artifacts in depth

of field or soft shadowing effects.

[15] and [14] change the regular order of photon mapping passes

to trace camera rays first, and then iteratively trace photons in

many secondary passes, each increasing the accuracy of the image

by refining the radiance estimate at ray trace points. This reduces

the memory requirements of photon mapping in that photons from

previous passes need not be stored. In [13] they improve this

algorithm by adding a distributed ray tracing pass after each

photon mapping pass to enable the algorithm to handle effects

such as motion blur or depth of field, and implement it using

fragment shaders on the GPU. Hachisuka demonstrates this in his

Stochastic Progressive Photon Mapping project.

[19] and [42] propose algorithms that can create spatial

subdivision trees entirely in GPGPU programs that are faster then

the best CPU algorithms. Javor proposes a uniform grid structure,

and Zhou creates KD-trees. [40] uses this algorithm to compute

photon mapping and real-time ray tracing entirely in the GPU

using irradiance caching.

[35] develops a CPU-based real-time ray tracer called OpenRT for

his PhD thesis, and briefly discusses GPU implementations and

global illumination. Aruana [5] is another implementation of a

high-performance CPU-based ray tracer.

Recently, attempts are being made to port smallPT [3] and

LuxRender (a derivative of pbrt, [29]) to use GPGPU algorithms

(SmallptGPU, SmallLuxGPU,[6]) to compute the path tracing

components using the OpenCL GPGPU environment.

The RenderCache [37] uses image-space caching and re-

projection of shaded pixels to reduce the shading costs for

proceeding frames of images, based on the fact that sequential

frames will likely be very similar, and can reduce the shading cost

of new frames by 10 to 100 times while preserving image quality.

[34] improve this algorithm to run on vertex and pixel shaders on

the GPU.

3. Solution to Problem

This project proposes using a modified photon mapping algorithm

to compute global illumination in a real-time graphics application.

This algorithm must be able to handle large scenes and dynamic

geometry. Due to time constraints and challenges learning the

CUDA architecture, this project was scaled back from its previous

goals of implementing a progressive algorithm that could cope

with dynamic geometry, and will only implement photon mapping

for static scenes.

3.1 Implementation Framework

This project was implemented in a combination of Python (using

the PyCUDA, pyglet, and PIL libraries) for the main application,

nVidia CUDA for the ray tracing and photon mapping algorithms,

and C++ for the KD tree building algorithms. It was implemented

on Windows 7, using a computer with an Intel Core2 Quad Q8200

CPU and an nVidia GeForce GTX 275 GPU. The implementation

should however be cross platform and run on any CUDA

Compute 2.3 capable device.

3.2 Overview

Python was used for the main application, and manages the GUI,

loading scene files, and calling all of the other modules. First, the

application loads and parses the scene files containing the

geometry and materials. The application also loads the scene

Surface Area Heuristic (SAH) KD tree which is created offline by

a separate tool. Using a CUDA algorithm in the GPU, photons are

traced through the scene and their hits recorded. The hits are then

compiled into a Voxel Volume Heuristic (VVH) KD tree using a

CPU algorithm in C++. The main loop of the program consists of

shooting camera rays (one per screen pixel) in a CUDA algorithm,

using the geometry KD tree to find candidate triangles, and the

Moller triangle intersection test [27] to find the nearest

intersection triangle. The ray hits are then passed to another

CUDA program that uses the photon KD tree to look up the k-

nearest photons to the hit position, using a max-heap to keep track

of the photon distances. The pixel's color is then computed as the

sum of the bidirectional reflectance distribution function (BRDF)

of each of the photons, divided by the area of the circle that

contains them. The final image is then post-processed (currently,

this is just gamma correction) and displayed.

The Surface Area Heuristic [25] Proposes keeping a geometry

KD tree intentionally unbalanced because the probability of a ray

entering nodes in the trees is not equal for all nodes. The cost

C(V) of a node V is estimated as:

 𝐶 𝑉 = 𝐶𝑡𝑟𝑎𝑣 + 𝑃 𝑉𝐿 𝐶 𝑉𝐿 + 𝑃 𝑉𝑅 𝐶 𝑉𝑅

Figure 3: Application components

where 𝐶𝑡𝑟𝑎𝑣 is the cost of traversing a node, and 𝑃 𝑉𝐿 , 𝑃 𝑉𝑅 is

the probability that a ray will intersect with the left and right

child, respectively. 𝑃 𝑉𝐿 and 𝑃 𝑉𝑅 are computed as

 𝑃 𝑉𝐿 =
𝑆𝐴𝐻 𝑉𝐿

𝑆𝐴𝐻 𝑉
 𝑃 𝑉𝑅 =

𝑆𝐴𝐻 𝑉𝑅

𝑆𝐴𝐻 𝑉

Where 𝑆𝐴𝐻 𝑉 is the surface area of a voxel.

Thus the minimum cost of a node can be found by evaluating all

possible splitting planes, and choosing the one with lowest cost.

The Voxel Volume Heuristic [36] Proposes a similar measure for

photon KD trees, but weighted by the volume of the node instead

of the surface area.

𝑃 𝑉𝐿 =
𝑉𝑂𝐿 𝑉𝐿 ± 𝑅

𝑉𝑂𝐿 𝑉 ± 𝑅
 𝑃 𝑉𝑅 =

𝑉𝑂𝐿 𝑉𝑅 ± 𝑅

𝑉𝑂𝐿 𝑉 ± 𝑅

Where 𝑅 is the maximum radius of a photon lookup.

4. Results

Evaluation was done primarily on two scenes, the Sponza Atrium

model (Fig. 5), and the Conference Room model (Fig. 6). The

Sponza Atrium has 76,154 triangles while the Conference room

has almost four times more geometry with 282,655 triangles. In

both scenes, 262,144 initial photons were shot from an area light

source in the sky, with a maximum of 4 bounces each.

approximately 675,000 total photon hits were recorded in the

photon map (photons were shot randomly, and are sometimes

absorbed or leave the scene without hitting anything). All images

were rendered at 512x512 pixels.

Figure 4: Left: Sponza Atrium, Right: Conference Room

4.1 Sample Images

Some images of the Sponza Atrium using the 32-nearest photons

for lighting. Notice diffuse interreflection (all ears not in direct

sunlight), soft shadows around columns, and colour bleeding of

the brown ceiling onto the floor. Also note the artifacts created by

the photon mapping algorithm, such as low-frequency noise

Figure 5: Sponza Atrium

in areas that are evenly lit (walls in all images), and where the

photon mapping algorithm considers photons that are nearby the

shading point, but should not contribute to the lighting (light

circles on floor around chair legs).

Figure 6: Conference Room

4.2 Performance

This algorithm is was able to achieve real time performance on

both scenes, with the rendering time mostly dependant on the

number of photons looked up per pixel.

Operation Time (ms)

Sponza

Atrium

Conf-

erence

Room

Ray tracing 26 26

Ray tracing + 2 nearest photon lookup 33 50

Ray tracing + 4 nearest photon lookup 36 54

Ray tracing + 8 nearest photon lookup 47 68

Ray tracing + 16 nearest photon lookup 67 107

Ray tracing + 32 nearest photon lookup 121 197

Ray tracing + 64 nearest photon lookup 264 399

Ray tracing + 128 nearest photon lookup 634 856

Ray tracing + 256 nearest photon lookup 1541 1977

Note that ray tracing performance is equal for both scenes, even

though the conference room scene has 4 times more geometry.

Performance is mainly affected by the number of photon samples

required per shading point. One reason for this may be that less

time was spent optimizing the photon lookup algorithm and its

KD tree, and the photons are being stored as AoS instead of SoA,

so memory bandwidth on the GPU may be the limiting factor.

Figure 7: four, 32, and 256 photon samples per pixel, showing

variance in lighting due to random photons

5. Conclusion

Advances in hardware technology present an excellent

opportunity for creating high-quality graphics applications.

Realistic computer generated images are in high demand, and

there has been much interest in the research community in the past

years in the topic of real-time applications.

This project demonstrates that it is feasible to create ray traced

and photon mapped images in real time using current graphics

hardware.

6. Acknowledgments

Thanks to Bartosz Fabianowski for assisting with CUDA

programming and real time photon mapping concepts, and for

providing test scenes.

7. Bibliography

[1] Aila, T., Laine., S., Understanding the efficiency of ray

traversal on GPUs , High-Performance Graphics 2009.

[2] Akenine-MöLler, T., Haines, E., Hoffman, N., Real-time

rendering, third edition, A.K. Peters Ltd. (2008)

[3] Beason, K., Smallpt: global illumination in 99 lines of c++,

http://kevinbeason.com/smallpt/, accessed Jan 13 2010

[4] Bikker, J., Real-time ray tracing through the eyes of a game

developer , Interactive Ray Tracing, 2007

[5] Bikker, J., Aruana: realtime ray tracing,

http://igad.nhtv.nl/~bikker/, accessed Jan 17, 2010

[6] Bucciarelli, D., Smallptgpu and smallluxgpu,

http://davibu.interfree.it/, accessed Jan 17, 2010

[7] Cohen, M. F., Greenberg, D. P., The hemicube: a radiosity

solution for complex environments, In Proceedings of

Siggraph (1985), pp. 31–40.

[8] Dingliana, B. F. A. J., Interactive global photon mapping,

Eurographics Symposium on Rendering 2009

[9] Dutré, P., Bala, K., Bekaert, P., Advanced global

illumination, second edition, A K Peters Ltd. (2006)

[10] Hachisuka, T., High-quality global illumination rendering

using rasterization, GPU Gems 2: Programming Techniques

for High Performance Graphics and General-Purpose

Computation, 2005

[11] Hachisuka, T., Final gathering on gpu, GP2, ACM Workshop

on General Purpose Computing on Graphics Processors, Los

Angeles, August 2004

[12] Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K.,

Humphreys, G., Zwicker, M., Jensen, H. W.,

Multidimensional adaptive sampling and reconstruction for

ray tracing, ACM Transactions on Graphics (SIGGRAPH

2008), 2008

[13] Hachisuka, T., Jensen, H. W., Stochastic progressive photon

mapping, ACM Transactions on Graphics (SIGGRAPH Asia

2009), 2009

[14] Hachisuka, T., Ogaki, S., Jensen, H. W., Progressive photon

mapping, ACM Transactions on Graphics (SIGGRAPH Asia

2008), 2008

[15] Havran, V., Herzog, R., Seidel, H.-P. 2005., Fast final

gathering via reverse photon mapping, Computer Graphics

Forum (Proceedings of Eurographics 2005) 24, 3

(September).

[16] Jensen, H. W., Realistic image synthesis using photon

mapping, A. K. Peters, Ltd. (2001)

[17] Jensen, H. W., Global illumination using photon maps,

Rendering Techniques '96. Eds. X. Pueyo and P. Schröder.

Springer-Verlag, pages 21-30, 1996

[18] Jozwowski, T.R. 2002., Real time photon mapping, MSc,

Michigan Technological University

[19] Kalojanov, J., Slusallek, P., A parallel algorithm for

construction of uniform grids, High Performance Graphics

2009, New Orleans

[20] Karlsson, F., Ljungstedt, C. J., Ray tracing fully

implemented on programmable graphics hardware, Master’s

Thesis, Chalmers University of Technology, Göteborg 2004

[21] Krivanek, J., Gautron, P., Radiance caching for efficient

global illumination computation, IEEE Trans. Visualization

and Computer Graphics 11(5):550–561 (2005)

[22] Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., Aila,

T., Incremental instant radiosity for real-time indirect

illumination, Eurographics Symposium on Rendering 2007

[23] Larson, B. D., Christensen, N., Simulating photon mapping

for real-time applications, In Proc. Eurographics pp123-131

(2004)

[24] Luxrender, , Gpl physically based renderer,

http://www.luxrender.net/, accessed Jan 17, 2010

[25] Macdonald, J. D., Booth, K. S., Heuristics for ray tracing

using space subdivision., Visual Computer 6, 6 (1990), 153–

65. 3

[26] Mcguire, M., Luebke, D., Hardware-accelerated global

illumination by image space photon mapping, In Proceedings

of the Conference on High Performance Graphics 2009 (New

Orleans, Louisiana, August 01 - 03, 2009).

[27] Moller, T., Trumbore, B., Fast minimum storage ray triangle

intersection , High Performance Graphics 2009, New Orleans

[28] Nijasure, M., Pattanaik, S., Goel, V., Real-time global

illumination on gpu, U. Central Florida, Orlando, FL

[29] Pharr, M., Humphreys, G., Physically based rendering,

Morgan Kaufmann (2004)

[30] Purcell, T. J., Donner, C., Cammarano, M., Jensen, H. W.,

Hanrahan, P., Photon mapping on programmable graphics

hardware, In Proc. Graphics Hardware, 41–50 (2003)

[31] Purcell, T. J., I. Buck, W. R. Mark, P. Hanrahan. 2002., Ray

tracing on programmable graphics hardware, ACM

Transactions on Graphics (Proceedings of SIGGRAPH 2002)

21(3), pp. 703–712.

[32] Sillion, F., Puech, C., A general two-pass method integrating

specular and diffuse refection, In Proceedings of Siggraph

(1989), pp. 335–344.

[33] Tole, P., Pellacini, F., Walter, B., Greenberg, D. P.,

Interactive global illumination in dynamic scenes, ACM

Trans. Graph. 21(3):537–546 (2002)

[34] VeláZquez-ArmendáRiz, E., Lee, E., Bala, K., Walter, B.

2006., Implementing the render cache and the edge-and-point

image on graphics hardware, In Proceedings of Graphics

interface 2006 (Quebec, Canada, June 07 - 09, 2006)

[35] Wald, I., Realtime ray tracing and interactive global

illumination, PhD Thesis, Saarland University, 2004

[36] Wald, I., GüNther, J., Slusallek, P., Balancing considered

harmful - faster photon mapping using the voxel volume

heuristic, Eurographics Symposium on Rendering 2004

[37] Walter, B., Drettakis, G., Greenberg, D. P. 2002., Enhancing

and optimizing the render cache, In Proceedings of the 13th

Eurographics Workshop on Rendering (Pisa, Italy, June 26 -

28, 2002)

[38] Walter, B., Drettakis, G., Parker., S., Interactive rendering

using the render cache, In Rendering techniques '99

(Proceedings of the 10th Eurographics Workshop on

Rendering), volume 10, pages 235--246, Jun 1999

[39] Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian,

M., Greenberg, D. P., Lightcuts: a scalable approach to

illumination, ACM Trans. Graph. 24(3):1098–1107 (2005)

[40] Wang, R., Zhou, K., Pan, M., Bao, H. 2009., An efficient

gpu-based approach for interactive global illumination, ACM

Trans. Graph. 28, 3 (Jul. 2009), 1-8.

[41] Ward, G. J., Rubinstein, F. M., Clear, R. D., A ray tracing

solution for diffuse interreflection, In Proc. SIGGRAPH

pp85–92 (1988)Zhou, K., Hou, Q., Wang, R., Guo, B. 2008.,

Real-time kd-tree construction on graphics hardware, ACM

Trans. Graph. 27(5) 126:1–11

[42] Zhou, K., Hou, Q., Wang, R., Guo, B. 2008., Real-time kd-

tree construction on graphics hardware, ACM Trans. Graph.

27(5) 126:1–11

	Introduction/Motivation
	Problem Description
	Background and Definitions
	Rendering Techniques
	Ray Tracing
	Photon Mapping
	Radiosity
	Other Strategies

	Related Work

	Solution to Problem
	Implementation Framework
	Overview

	Results
	Sample Images
	Performance

	Conclusion
	Acknowledgments
	Bibliography

